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1. INTRODUCTION 
 

The management and combination of 
uncertain, imprecise, fuzzy and even 
paradoxical or high conflicting sources of 
information has always been, and still remains 
today, of primal importance for the 
development of reliable modern information 
systems involving artificial reasoning. The 
combination (fusion) of information arises in 
many fields of applications nowadays 
(especially in defense, medicine, finance, geo-
science, economy, etc).  

When several sensors, observers or experts 
have to be combined together to solve a 
problem, or if one wants to update our current 
estimation of solutions for a given problem 
with some new information available, we need 
powerful and solid mathematical tools for the 
fusion, specially when the information one has 
to deal with is imprecise and uncertain. In this 
paper, we present a survey of our recent theory 
of plausible and paradoxical reasoning, known 
as Dezert-Smarandache Theory (DSmT) in the 

literature, developed for dealing with 
imprecise, uncertain and paradoxical sources 
of information. Recent publications have 
shown the interest and the ability of DSmT to 
solve problems where other approaches fail, 
especially when conflict between sources 
becomes high.  

We focus our presentation here rather on 
the foundations of DSmT, and on the two 
important new rules of combination, than on 
browsing specific applications of DSmT 
available in literature.  

A particular attention is given to general 
(hybrid) rule of combination which deals with 
any model for fusion problems, depending on 
the nature of elements or hypotheses involved 
into them. The Shafer’s model on which is 
based the Dempster-Shafer Theory (DST) 
appears only as a specific DSm hybrid model 
and can be easily handled by our approach as 
well. Several simple examples are given 
throughout the presentation to show the 
efficiency and the generality of this new 
approach. 



An Introduction to the DSM Theory for the Combination of Paradoxical, Uncertain and… 

 30 

2. FOUNDATIONS OF THE DSMT 
 
The development of the DSmT (Dezert-

Smarandache Theory of plausible and 
paradoxical reasoning [24, 6]) arises from the 
necessity to overcome the inherent limitations 
of the DST (Dempster-Shafer Theory [18]) 
which are closely related with the acceptance 
of Shafer’s model for the fusion problem 
under consideration (i.e. the frame of 
discernment Θ defined as a finite set of 
exhaustive and exclusive hypotheses θi, i = 1, . 
. . , n), the third middle excluded principle (i.e. 
the existence of the complement for any 
elements/propositions belonging to the power 
set of Θ), and the acceptance of Dempter’s 
rule of combination (involving normalization) 
as the framework for the combination of 
independent sources of evidence. Discussions 
on limitations of DST and presentation of 
some alternative rules to the Dempster’s rule 
of combination can be found in [38, 39, 40, 34, 
41, 8, 35, 15, 28, 32, 10, 14, 12, 17, 13, 24] 
and therefore they will be not reported in 
details in this paper. We argue that these three 
fundamental conditions of the DST can be 
removed and another new mathematical 
approach for combination of evidence is 
possible. 

The basis of the DSmT is the refutation of 
the principle of the third excluded middle and 
Shafer’s model, since for a wide class of 
fusion problems the intrinsic nature of 
hypotheses can be only vague and imprecise in 
such a way that precise refinement is just 
impossible to obtain in reality so that the 
exclusive elements θi cannot be properly 
identified and precisely separated. Many 
problems involving fuzzy continuous and 
relative concepts described in natural language 
and having no absolute interpretation like 
tallness/smallness, pleasure/pain, cold/hot, 
Sorites paradoxes, etc, enter in this category. 
DSmT starts with the notion of free DSm 
model, denoted Mf(Θ), and considers Θ only as 
a frame of exhaustive elements θi, i = 1, . . . , n 
which can potentially overlap. This model is 
free because no other assumption is done on 
the hypotheses, but the weak exhaustivity 
constraint which can always been satisfied 
according the closure principle explained in 

[24]. No other constraint is involved in the free 
DSm model. When the free DSm model holds, 
the classic commutative and associative DSm 
rule of combination (corresponding to the 
conjunctive consensus defined on the free 
Dedekind’s lattice) is performed.  

 

Depending on the intrinsic nature of the 
elements of the fusion problem under 
consideration, it can however happen that the 
free model does not fit the reality because 
some subsets of Θ can contain elements 
known to be truly exclusive but also truly non 
existing at all at a given time (specially when 
working on dynamic fusion problem where the 
frame Θ varies with time with the revision of 
the knowledge available).  

 

These integrity constraints are then 
explicitly and formally introduced into the free 
DSm model Mf(Θ) in order to adapt it properly 
to fit as close as possible with the reality and 
permit to construct a hybrid DSm model M (Θ) 
on which the combination will be efficiently 
performed. Shafer’s model, denoted M0(Θ), 
corresponds to a very specific hybrid DSm 
model including all possible exclusivity 
constraints. The DST has been developed for 
working only with Mf(Θ) while the DSmT has 
been developed for working with any kind of 
hybrid model (including Shafer’s model and 
the free DSm model), to manage as efficiently 
and precisely as possible imprecise, uncertain 
and potentially high conflicting sources of 
evidence while keeping in mind the possible 
dynamicity of the information fusion 
problematic. The foundations of the DSmT are 
therefore totally different from those of all 
existing approaches managing uncertainties, 
imprecisions and conflicts. DSmT provides a 
new interesting way to attack the information 
fusion problematic with a general framework 
in order to cover a wide variety of problems. 

 

DSmT refutes also the idea that sources of 
evidence provide their beliefs with the same 
absolute interpretation of elements of the same 
frame Θ and the conflict between sources 
arises not only because of the possible 
unreliabilty of sources, but also because of 
possible different and relative interpretation of 
Θ, e.g. what is considered as good for 
somebody can be considered as bad for 
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somebody else. There is some unavoidable 
subjectivity in the belief assignments provided 
by the sources of evidence, otherwise it would 
mean that all bodies of evidence have a same 
objective and universal interpretation (or 
measure) of the phenomena under 
consideration, which unfortunately rarely 
occurs in reality, but when bba are based on 
some objective probabilities transformations. 
But in this last case, probability theory can 
handle properly and efficiently the 
information, and the DST, as well as the 
DSmT, becomes useless. If we now get out of 
the probabilistic background argumentation for 
the construction of bba, we claim that in most 
of cases, the sources of evidence provide their 
beliefs about elements of the frame of the 
fusion problem only based on their own 
limited knowledge and experience without 
reference to the (inaccessible) absolute truth of 
the space of possibilities. First applications of 
DSmT for target tracking, satellite 
surveillance, situation analysis and sensor 
allocation optimization can be found in [24]. 

 
2.1. NOTION OF HYPER-POWER  

SET DΘ 
 
One of the cornerstones of the DSmT is the 

free Dedekind lattice [3] denoted hyper-power 
set in the DSmT framework. Let Θ = {θ1, . . . , 
θn} be a finite set (called frame) of n 
exhaustive elements. The hyper-power set DΘ 
is defined as the set of all composite 
propositions built from elements of Θ with U 
and ∩ operators such that: 

1. ø, θ1, . . . , θn є DΘ. 
2. If A,B є DΘ, then A ∩ B є DΘ and A U B 

є DΘ. 
3. No other elements belong to DΘ, except 

those obtained by using rules 1 or 2. 
The dual (obtained by switching U and ∩ 

in expressions) of DΘ is itself. There are 
elements in DΘ which are self-dual (dual to 
themselves), for example α8 for the case when 
n = 3 in the following example.  

The cardinality of DΘ is majored by 22n 
when the cardinality of Θ equals n, i.e. |Θ| = n. 
The generation of hyper-power set DΘ is 
closely related with the famous Dedekind’s 
problem [3, 2] on enumerating the set of 

isotone Boolean functions. The generation of 
the hyper-power set is presented in [24]. Since 
for any given finite set Θ, |DΘ| ≥ |2Θ| we call 
DΘ the hyper-power set of Θ. 

Example of the first hyper-power sets DΘ  
• For the degenerate case (n = 0) where Θ = 

{}, one has DΘ = {α0∆ø} and |DΘ| = 1. 
• When Θ = {θ1}, one has DΘ = {α0∆ø, α1∆ 

θ1} and |DΘ| = 2. 
• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, 

…, α4} and |DΘ| = 5 with α0∆ø, α1∆θ1∩θ2, 
α2∆θ1,  α3∆θ2 and α4∆θ1Uθ2. 

• When Θ = {θ1, θ2, θ3}, one has DΘ = { α0, 
α1, …, α18} and |DΘ| = 19 with 

 
 
 
 
 
 
 
 
 
 
 
The cardinality of hyper-power set DΘ for 

n ≥ 1 follows the sequence of Dedekind’s 
numbers [19], i.e. 1, 2, 5, 19, 167, 7580, 
7828353,... and analytical expression of 
Dedekind’s numbers has been obtained 
recently by Tombak in [31] (see [24] for 
details on generation and ordering of DΘ). 

 
2.2. NOTION OF FREE AND HYBRID 

DSm MODELS 
 
Elements θi, i = 1, . . . , n of Θ constitute 

the finite set of hypotheses/concepts 
characterizing the fusion problem under 
consideration. DΘ constitutes what we call the 
free DSm model Mf(Θ) and allows to work 
with fuzzy concepts which depict a continuous 
and relative intrinsic nature. Such kinds of 
concepts cannot be precisely refined in an 
absolute interpretation because of the 
unapproachable universal truth. However for 
some particular fusion problems involving 
discrete concepts, elements θi are truly 
exclusive. In such case, all the exclusivity 
constraints on θi, i = 1, . . . , n have to be 
included in the previous model to characterize 

α0∆ø 
α1∆θ1∩θ2∩θ3 
α2 ∆θ1∩θ2 
α3∆θ1∩θ3 
α4∆θ2∩θ3 
α5∆(θ1Uθ2)∩θ3 
α6∆(θ1Uθ3)∩θ2 
α7∆(θ2Uθ3)∩θ1 
α8∆(θ1∩θ2)U 
(θ1∩θ3)U(θ2∩θ3) 

α9∆θ1 
α 10∆θ2 
α11∆θ3 
α12 ∆(θ1∩θ2)Uθ3 
α13 ∆(θ1∩θ3)Uθ2 
α14 ∆(θ2∩θ3)Uθ1 
α15 ∆θ1Uθ2 
α16∆θ1Uθ3 
α17∆θ2Uθ3 
α18 ∆θ1Uθ2Uθ3 
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properly the true nature of the fusion problem 
and to fit it with the reality. By doing this, the 
hyper-power set DΘ reduces naturally to the 
classical power set 2Θ and this constitutes the 
most restricted hybrid DSm model, denoted 
M0(Θ), coinciding with Shafer’s model. As an 
exemple, let’s consider the 2D problemwhere 
Θ  = {θ1, θ2} with DΘ = {ø, θ1∩θ2, θ1, θ2, 
θ1Uθ2} and assume now that θ1 and θ2 are truly 
exclusive (i.e. Shafer’s model M0 holds), then 
because θ1∩θ2 M0  = ø, one gets DΘ = {ø, 
θ1∩θ2 M0  = ø, θ1, θ2, θ1Uθ2} = {ø, θ1, θ2, 
θ1Uθ2} ≡ 2Θ. 

Between the class of fusion problems 
corresponding to the free DSm model Mf(Θ) 
and the class of fusion problems corresponding 
to Shafer’s model M0(Θ),  there exists another 
wide class of hybrid fusion problems involving 
in Θ  both fuzzy continuous concepts and 
discrete hypotheses. In such (hybrid) class, 
some exclusivity constraints and possibly 
some non-existential constraints (especially 
when working on dynamic fusion) have to be 
taken into account. Each hybrid fusion 
problem of this class will then be characterized 
by a proper hybrid DSm model M(Θ) with 
M(Θ) ≠ Mf(Θ) and M(Θ) ≠ M0(Θ). As simple 
example of DSm hybrid model, let’s consider 
the 3D case with the frame Θ  = {θ1, θ2, θ3} 
with the model M ≠ Mf in which we force all 
possible conjunctions to be empty, but θ1∩θ2. 
This hybrid DSm model is then represented 
with the following Venn diagram (where 
boundaries of intersection of θ1 and θ2 are not 
precisely defined if θ1 and θ2 represent only 
fuzzy concepts like smallness and tallness by 
example). 

 

 
 

Fig.1 A hybrid DSm model Mf(Θ) 

2.3. GENERALIZED BELIEF 
FUNCTIONS 

 
From a general frame Θ, we define a map 

m(.): DΘ → [0, 1] associated to a given body of 
evidence B as:  

m(ø) = 0 and ∑
Θ∈DA

)A(m  = 1   (1) 

The quantity m(A) is called the generalized 
basic belief assignment/mass (gbba) of A. The 
generalized belief and plausibility functions 
are defined in almost the same manner as 
within the DST, i.e. 
  Bel ∑

∈⊆
=

DB,AB
)B(m)A( , Pl ∑

∈φ≠∩
=

DB,AB
)B(m)A(  

                                                                      (2) 
These definitions are compatible with the 

definitions of classical belief functions in the 
DST framework when DΘ reduces to 2Θ for 
fusion problems where Shafer’s model M0(Θ) 
holds.  

We still have ∀  A∈DΘ, Bel(A) ≤ Pl(A). 
Note that when working with the free        
DSm model Mf(Θ), one has always Pl(A) = 1    
∀A ≠ ø ∈DΘ  which is normal. 
 

2.4. THE CLASSIC DSm RULE OF 
COMBINATION 

 
When the free DSm model Mf(Θ) holds for 

the fusion problem under consideration,       
the classic DSm rule of combination               
m Mf(Θ) ≡  m (.) ∆ [m1  ⊕  m 2 ] two 
independent sources of evidences  B1  and 
B 2 over the same frame Θ with belief 
functions Bel1 (.) and Bel 2 (.) associated with 
gbba m1  (.) and m 2 (.) corresponds to the 
conjunctive consensus of the sources.  

It is given by [24]: ∀  C ∈D Θ ,             
)C(m )(Mf Θ
≡  m (C) = )B(m)A(m

CBA,DB,A
21∑

=∩∈ Θ
 

                                                            (3) 
Since D Θ  is closed under U  and I  set 

operators, this new rule of combination 
guarantees that m (.) is a proper generalized 
belief assignment, i.e. m (.) : D Θ  → [0, 1]. 
This rule of combination is commutative and 
associative and can always be used for the 
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fusion of sources involving fuzzy concepts 
when free DSm model holds for the problem 
under consideration. This rule can be directly 
and easily extended for the combination of      
k > 2 independent sources of evidence [24].  

This classic DSm rule of combination 
looks very expensive in terms of computations 
and memory size due to the huge number of 
elements in D Θ  when the cardinality of Θ 
increases. This remark is however valid only if 
the cores (the set of focal elements of gbba) 
K1 ( m1 ) and K 2  (m 2 ) coincide with D Θ ,    
i.e. when m1  (A)  > 0 and m 2 (A) > 0 for all   
A ≠  ø ∈  D Θ . Fortunately, it is important to 
note here that in most of the practical 
applications the sizes of K1 ( m1 ) and K 2  
(m 2 ) are much smaller than |D Θ | because 
bodies of evidence generally allocate their 
basic belief assignments only over a subset of 
the hyper-power set. This makes things easier 
for the implementation of the classic DSm rule 
(3). The DSm rule is actually very easy to 
implement. It suffices for each focal element 
of K1 (m1 ) to multiply it with the focal 
elements of K2 (m 2 ) and then to pool all 
combinations which are equivalent under the 
algebra of sets. 

While very costly in term on memory 
storage in the worst case (i.e. when all m (A)  
> 0, A ∈  D Θ  or A ∈  2 ref

Θ ), the DSm rule 
however requires much smaller memory 
storage than for the DST working on the 
ultimate refinement of 2 ref

Θ same initial frame 
Θ as shown in following table: 
 

Table 1 A DSm / DST comparison 
 in memory storage 

 | Θ | = n |D Θ | |2 ref
Θ | = 2 12 −n

 
2 
 
3 
 
4 
 
5 

5 
 
19 
 
167 
 
7580 

2 3 =8 
2 7 =128 
215 =32768 
2 31 =2147483648 

 
However in most fusion applications only a 

small subset of elements of D Θ have a non null 

basic belief mass because all the commitments 
are just usually impossible to assess precisely 
when the dimension of the problem increases. 
Thus, it is not necessary to generate and keep 
in memory all elements of D Θ or 2 ref

Θ but only 
those which have a positive belief mass. 
However there is a real technical challenge on 
how to manage efficiently all elements of the 
hyper-power set. This problem is obviously 
much more difficult when trying to work on 
the refined frame of discernment 2 ref

Θ if one 
prefer to apply Dempster-Shafer theory and 
use the Dempster’s rule of combination. It is 
important to keep in mind that the ultimate 
refined frame consisting in exhaustive and 
exclusive finite set of refined hypotheses is 
just impossible to justify and to define 
precisely for all problems dealing with fuzzy 
and ill-defined continuous concepts. A full 
discussion and example on refinement can be 
found in [24]. 
 

2.5. THE HYBRID DSm RULE OF 
COMBINATION 

 
When the free DSm model Mf(Θ) does not 

hold due to the true nature of the fusion 
problem under consideration which requires to 
take into account some known integrity 
constraints, one has to work with a proper 
hybrid DSm model M(Θ) ≠  Mf(Θ).  In such 
case, the hybrid DSm rule of combination 
based on the chosen hybrid DSm model M(Θ) 
for k ≥ 2 independent sources of information is 
defined for all A ∈  D Θ  as [24]: 

 

)A(m )(M Θ  ∆  ø(A) [S1 (A) + S 2 (A) + S 3 (A)] 
                                                            (4) 
where all sets involved in formulas are in the 
canonical form and ø (A) is the characteristic 
non-emptiness function of a set A, i.e.              
ø (A) = 1 if A∉  Ø and ø (A) = 0 otherwise, 
where Ø ∆ {Ø M , Ø} is the set of all elements 
of D Θ  which have been forced to be empty 
through the constraints of the model M and Ø 
is the classical/universal empty set. 

S1 (A) ∆ ∑ ∏
=∩∩∩

∈ =Θ

AX...XX
,DX,...,X,X

k

1i
ii

k21
k21

)X(m  (5) 
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S 2 (A) ∆ ∑ ∏
=∧∈∨=

∈ =
)]IA()øu[(]Au[

,øX,...,X,X

k

1i
ii

t
k21

)X(m  (6) 

 

S 3 (A) ∆ ∑ ∏

∈∩∩∩
=∪∪∪

∈ =Θ

 ØX...XX
,AX...XX

,DX,...,X,X

k

1i
ii

k21
k21

k21

)X(m        (7) 

with U∆ u (X1 )∪  u (X 2 ) ∪…∪  u (X k ) 
where u (X) is the union of all θi that compose 
X, I t  ∆ n21 ... θ∪∪θ∪θ  is the total 
ignorance. S1 (A) corresponds to the classic 
DSm rule for k independent sources based on 
the free DSm model Mf(Θ); S 2 (A) represents 
the mass of all relatively and absolutely empty 
sets which is transferred to the total or relative 
ignorances associated with non existential 
constraints (if any, like in some dynamic 
problems); S 3 (A) transfers the sum of 
relatively empty sets directly onto the 
canonical disjunctive form of non-empty sets. 

The hybrid DSm rule of combination 
generalizes the classic DSm rule of 
combination and is not equivalent to 
Dempter’s rule. It works for any models (the 
free DSm model, Shafer’s model or any other 
hybrid models) when manipulating precise 
generalized (or eventually classical) basic 
belief functions. An extension of this rule for 
the combination of imprecise generalized (or 
eventually classical) basic belief functions is 
presented in next section. 

Note that in DSmT framework it is also 
possible to deal directly with complements if 
necessary depending on the problem under 
consideration and the information provided by 
the sources of evidence themselves. The first 
and simplest way is to work on Shafer’s model 
when ultimate refinement is possible. The 
second way is to deal with partially known 
frame and introduce directly the 
complementary hypotheses into the frame 
itself. By example, if one knows only two 
hypotheses 1θ , 2θ  and their complements 1θ , 

2θ , then can choose Θ = { 1θ , 2θ , 1θ , 2θ }. In 
such case, we don’t necessarily assume that 

1θ = 2θ  and 2θ  = 1θ because 1θ  and 2θ  may 
include other unknown hypotheses we have no 

information about (case of partial known 
frame). More generally, in DSmT framework, 
it is not necessary that the frame is built on 
pure/simple (possibly vague) hypotheses _i as 
usually done in all theories managing 
uncertainty. The frame Θ can also contain 
directly as elements conjunctions and/or 
disjunctions (or mixed propositions) and 
negations/complements of pure hypotheses as 
well. The DSm rules also work in such non-
classic frames because DSmT works on any 
distributive lattice built from Θ anywhere Θ is 
defined. 

 
2.6. FUSION OF IMPRECISE BELIEFS 

 
In many fusion problems, it seems very 

difficult (if not impossible) to have precise 
sources of evidence generating precise basic 
belief assignments (especially when belief 
functions are provided by human experts), and 
a more flexible plausible and paradoxical 
theory supporting imprecise information 
becomes necessary. In the previous sections, 
we presented the fusion of precise uncertain 
and conflicting/paradoxical generalized basic 
belief assignments (gbba) in the DSmT 
framework. We mean here by precise gbba, 
basic belief functions/masses m(.) defined 
precisely on the hyper-power set D Θ , where 
each mass m(X), where X belongs to D Θ , is 
represented by only one real number belonging 
to [0, 1] such that ∑

Θ∈

=
DX

1)X(m .  

In this section, we present the DSm fusion 
rule for dealing with admissible imprecise 
generalized basic belief assignments Im (.) 
defined as real subunitary intervals of [0, 1], or 
even more general as real subunitary sets [i.e. 
sets, not necessarily intervals]. An imprecise 
belief assignment Im (.) over D Θ is said 
admissible if and only if there exists for every 

Θ∈DX at least one real number m(X) 
Im∈ (X) such that ∑

Θ∈

=
DX

1)X(m .  

The idea to work with imprecise belief 
structures represented by real subset intervals 
of [0, 1] is not new and has been investigated 
in [11, 4, 5] and references therein. The 
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proposed works available in the literature, 
upon our knowledge were limited only to sub-
unitary interval combination in the framework 
of Transferable Belief Model (TBM) 
developed by Smets [29, 30]. We extend the 
approach of Lamata &Moral and Denoeux 
based on subunitary interval-valued masses to 
subunitary set-valued masses; therefore the 
closed intervals used by Denoeux to denote 
imprecise masses are generalized to any sets 
included in [0,1], i.e. in our case these sets can 
be unions of (closed, open, or half-open/half-
closed) intervals and/or scalars all in [0, 1]. 
Here, the proposed extension is done in the 
context of the DSmT framework, although it 
can also apply directly to fusion of imprecise 
belief structures within TBM as well if the 
user prefers to adopt TBM rather than DSmT. 

Before presenting the general formula for 
the combination of generalized imprecise 
belief structures, we remind the following set 
operators involved in the formula. Several 
numerical examples are given in [24]. 
• Addition of sets 

1S 2S = 2S 1S  , {x | x = 1s + 2s , 1s ∈ 1S , 

2s ∈ 2S } with (inf( 1S 2S ) = inf( 1S ) + inf( 2S ), 
sup( 1S 2S ) = sup( 1S ) + sup( 2S ) 
• Subtraction of sets 

1S 2S  , {x | x = 1s  − 2s , 1s ∈ 1S , 2s ∈ 2S } with 
(inf( 1S   2S ) = inf( 1S ) − sup( 2S ), sup( 1S _ 2S ) 
= sup( 1S ) − inf( 2S ) 
• Multiplication of sets 

1S  2S , {x | x = 1s · 2s , 1s ∈ 1S , 2s ∈ 2S } with 
(inf( 1S 2S ) = inf( 1S ) · inf( 2S ), sup( 1S 2S ) =  
= sup( 1S ) · sup( 2S ) 

2.6.1. DSm rule of combination for 
imprecise beliefs  

We present the generalization of the DSm 
rules to combine any type of imprecise belief 
assignment which may be represented by the 
union of several sub-unitary (half-) open 
intervals, (half-)closed intervals and/or sets of 
points belonging to [0,1]. Several numerical 
examples are also given. In the sequel, one 
uses the notation (a, b) for an open interval, [a, 
b] for a closed interval, and (a, b] or [a, b) for 
a half open and half closed interval. From the 
previous operators on sets, one can generalize 
the DSm rules (classic and hybrid) from 

scalars to sets in the following way [24] (chap. 
6): Θ∈≠∀ DøA , 

( ) ∏∑
=

=∩∩∩
∈ Θ

=
k,...,1i

i
I
i

AX...XX
,DX....,XX

I )X(mAm

k21
k,2,1

   (8) 

where ∑ and ∏  represent the summation, 
and respectively product, of sets. Similarly, 
one can generalize the hybrid DSm rule from 
scalars to sets in the following way: 

)A(mI
)(M Θ ∆ )(ø A )A(S[ I

1 )A(SI
2 )]A(SI

3  
                                                                      (9) 
where all sets involved in formulas are in the 
canonical form and )A(ø is the characteristic 
non emptiness function of the set A and 

)A(SI
1 , )A(SI

2 and )A(SI
3 are defined by: 

 

)A(SI
1 ∆ ∑ ∏

=∩∩∩
∈ =Θ

AX...XX
,DX....,XX k,...,1i

i
I
i

k21
k,2,1

)X(m    (10) 

 

)A(SI
2 ∆ ∑ ∏

=∧φ∈∨=
φ∈ =

A)IA()u()Au(
,X....,XX k,...,1i

i
I
i

t
k,2,1

)X(m  

                                                               (11) 
)A(SI

3 ∆ ∑ ∏

φ∈∩∩∩
=∪∪∪

∈ =Θ

k21
k21

k,2,1

X...XX
,AX...XX

,DX....,XX k,...,1i
i

I
i )X(m   (12) 

 

In the case when all sets are reduced to 
points (numbers), the set operations become 
normal operations with numbers; the sets 
operations are generalizations of numerical 
operations. When imprecise belief structures 
reduce to precise belief structure, DSm rules 
(9) and (10) reduce to their precise version (3) 
and (4) respectively. 
 

3. PROPORTIONAL CONFLICT 
REDISTRIBUTION RULE 

 
Instead of applying a direct transfer of 

partial conflicts onto partial uncertainties as 
with DSmH, the idea behind the Proportional 
Conflict Redistribution (PCR) rule [25, 26] is 
to transfer (total or partial) conflicting masses 
to non-empty sets involved in the conflicts 
proportionally with respect to the masses 
assigned to them by sources as follows: 
1. calculation the conjunctive rule of the belief 
masses of sources; 



An Introduction to the DSM Theory for the Combination of Paradoxical, Uncertain and… 

 36 

2. calculation the total or partial conflicting 
masses; 
3. redistribution of the (total or partial) 
conflictingmasses to the non-empty sets 
involved in the conflicts proportionally with 
respect to their masses assigned by the 
sources. 

The way the conflicting mass is 
redistributed yields actually several versions of 
PCR rules.  

These PCR fusion rules work for any 
degree of conflict, for any DSm models 
(Shafer’s model, free DSm model or any 
hybrid DSm model) and both in DST and 
DSmT frameworks for static or dynamical 
fusion situations. We present below only the 
most sophisticated proportional conflict 
redistribution rule (corresponding to PCR5 in 
[25, 26] but denoted here just PCR for 
simplicity) since this PCR rule is what we feel 
the most efficient PCR fusion rule developed 
so far6. PCR rule redistributes the partial 
conflicting mass to the elements involved in 
the partial conflict, considering the conjunctive 
normal form of the partial conflict. PCR is 
what we think the most mathematically exact 
redistribution of conflicting mass to non-
empty sets following the logic of the 
conjunctive rule.  

PCR does a better redistribution of the 
conflicting mass than Dempster’s rule sice 
PCR goes backwards on the tracks of the 
conjunctive rule and redistributes the 
conflicting mass only to the sets involved in 
the conflict and proportionally to their masses 
put in the conflict. PCR rule is quasi-
associative and preserves the neutral impact of 
the vacuous belief assignment because in any 
partial conflict, as well in the total conflict 
(which is a sum of all partial conflicts), the 
conjunctive normal form of each partial 
conflict does not include Θ since Θ is a neutral 
element for intersection (conflict), therefore Θ 
gets no mass after the redistribution of the 
conflicting mass. We have also proved in [26] 
the continuity property of the PCR result with 
continuous variations of bba to combine.  

The general PCR formula for s ≥  2  
sources is given by [26] )(mPCR φ = 0 and 

GX∈∀ \ { ø }: 
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                                                                    (13) 
where all sets involved in formulas are in 
canonical form (i.e. conjunctive normal form) 
and where G corresponds to classical power-
set Θ2  if Shafer’s model is used or G 
corresponds to a constrained hyper-power set 

ΘD if any other hybrid DSm model is used 
instead; i, j, k, r, s and t in (14) are integers. 

)X(m)X(m s...12 ∩≡  corresponds to the 
conjunctive consensus on X between s sources 
and where all denominators are different from 
zero. If a denominator is zero, that fraction is 
discarded; the set of all subsets of k elements 
from {1, 2, . . . , n} (permutations of n 
elements taken by k) was denoted 

KP ({1,2,...,n}), the order of elements doesn’t 
count. When s = 2 (fusion of only two 
sources), the previous PCR rule reduces to its 
simple following fusion formula: )(mPCR φ = 0 
and GX∈∀ \ { ø },  

+= )X(m)X(m 12PCR  

+ ∑
φ=∩

∈ ⎥
⎥
⎦

⎤

⎢
⎢
⎣
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YX

}X{\GY 12
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2

21

2
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1

)Y(m)X(m

)Y(m)X(m

)Y(m)X(m

)Y(m)X(m  

                                                                    (14) 
 

3.1. THE GENERALIZED PIGNISTIC 
TRANSFORMATION (GPT) 

 
3.1.1. The classical pignistic transformation  
We follow here the Smets’ vision which 

considers the management of information as a 
two 2-levels process: credal (for combination 
of evidences) and pignistic (for decision-
making), i.e ”when someone must take a 
decision, he must then construct a probability 
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function derived from the belief function that 
describes his credal state. This probability 
function is then used to make decisions” [28]. 
One obviousway to build this probability 
function corresponds to the so-called Classical 
Pignistic Transformation (CPT) defined in the 
DST framework (i.e. based on the Shafer’s 
model assumption) as [30]: 

)X(m
X

AX
}A{P

2X
∑

Θ∈

∩
=           (15) 

where |A| denotes the number of worlds in the 
set A (with convention |φ |/|φ | = 1, to define 
P{φ }). P{A} corresponds to BetP(A) in 
Smets’ notation [30]. Decisions are achieved 
by computing the expected utilities of the acts 
using the subjective/pignistic P{.} as the 
probability function needed to compute 
expectations. Usually, one uses the maximum 
of the pignistic probability as decision 
criterion. The max. of P{.} is often considered 
as a prudent betting decision criterion between 
the two other alternatives (max of plausibility 
or max. of credibility which appears to be 
respectively too optimistic or too pessimistic). 
It is easy to show that P{.} is indeed a 
probability function (see [29]). 

3.1.2. Notion of DSm cardinality.  
One important notion involved in the 

definition of the Generalized Pignistic 
Transformation (GPT) is the DSm cardinality. 
The DSm cardinality of any element A of 
hyper-power set ΘD , denoted )A(CM , 
corresponds to the number of parts of A in the 
corresponding fuzzy/vague Venn diagram of 
the problem (model M) taking into account the 
set of integrity constraints (if any), i.e. all     
the possible intersections due to the nature     
of the elements iθ . This intrinsic cardinality 
depends on the model M (free, hybrid or 
Shafer’s model). M is the model that contains 
A, which depends both on the dimension         
n = |Θ | and on the number of non-empty 
intersections present in its associated Venn 
diagram (see [24] for details). The DSm 
cardinality depends on the cardinal of           
Θ  = { 1θ , 2θ , …, nθ } and on the model of 
ΘD  (i.e., the number of intersections and 

between what elements of Θ  - in a word the 

structure) at the same time; it is not necessarily 
that every singleton, say iθ , has the same 
DSm cardinal, because each singleton has a 
different structure; if its structure is the 
simplest (no intersection of this elements   
with other elements) then MC ( iθ ) = 1, if     
the structure is more complicated (many 
intersections) then MC ( iθ ) > 1; let’s consider 
a singleton iθ : if it has 1 intersection only then 

MC ( iθ ) = 2, for 2 intersections only MC ( iθ ) 
is 3 or 4 depending on the model M, form 
intersections it is between m+1 and m2  
depending on the model; the maximum DSm 
cardinality is 1n2 −  and occurs for  1θ ∪  2θ ∪  

…∪  nθ  in the free model fM ; similarly for 

any set from ΘD : the more complicated 
structure it has, the bigger is the DSm cardinal; 
thus the DSm cardinality measures the 
complexity of en element from ΘD , which is a 
nice characterization in our opinion; we may 
say that for the singleton iθ  not even |Θ | 
counts, but only its structure (= how many 
other singletons intersect iθ ). Simple 
illustrative examples are given in Chapter 3 
and 7 of [24]. One has 1 ≤  )A(CM  ≤  1n2 − . 

)A(CM  must not be confused with the 
classical cardinality |A| of a given set A (i.e. 
the number of its distinct elements) - that’s 
why a new notation is necessary here. )A(CM  
is very easy to compute by programming from 
the algorithm of generation of D_ given 
explicated in [24].  
 
4. FUSION OF QUALITATIVE BELIEFS 

 
We introduce here the notion of qualitative 

belief assignment to model beliefs of human 
experts expressed in natural language (with 
linguistic labels). We show how qualitative 
beliefs can be efficiently combined using an 
extension of Dezert-Smarandache Theory 
(DSmT) of plausible and paradoxical 
quantitative reasoning to qualitative reasoning 
shortly presented in previous sections. A more 
detailed presentation can be found in [26]. The 
derivations are based on a new arithmetic on 
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linguistic labels which allows a direct 
extension of classical DSm fusion rule or DSm 
Hybrid rules. An approximate qualitative 
PCR5 rule is also presented. 
 

4.1. QUALITATIVE OPERATORS 
 

Computing with words (CW) and 
qualitative information is more vague, less 
precise than computing with numbers, but it 
offers the advantage of robustness if done 
correctly. Here is a general arithmetic we 
propose for computing with words (i.e. with 
linguistic labels). Let’s consider a finite frame 
Θ  = { 1θ , ..., nθ } of n (exhaustive) elements 

iθ , i = 1, 2, . . . , n, with an associated model 

)(ΘM on Θ  (either Shafer’s model )(M0 Θ , 

free-DSm model )(Mf Θ , or more general any 
Hybrid-DSm model [24]). A model )(M Θ  is 
defined by the set of integrity constraints on 
elements of  Θ  (if any); Shafer’s model 

)(M0 Θ assumes all elements of Θ  truly 

exclusive, while free-DSm model )(Mf Θ  
assumes no exclusivity constraints between 
elements of the frame Θ . Let’s define a finite 
set of linguistic labels L  = { 1L , 2L , …, mL } 
where ≥m 2 is an integer. L  is endowed with 
a total order relationship p , so that 1L p  

2L p  …p  mL . To work on a close linguistic 
set under linguistic addition and multiplication 
operators, we extends L  with two extreme 
values 0L  and  1mL +  where 0L  corresponds 
to the minimal qualitative value and 1mL +  
corresponds to the maximal qualitative value, 
in such a way that 0L p 1L p  2L p  …p  

mL p 1mL +  where p  means inferior to, or less 
(in quality) than, or smaller (in quality) than, 
etc. hence a relation of order from a qualitative 
point of view. But if we make a 
correspondence between qualitative labels and 
quantitative values on the scale [0, 1], then  

minL = 0L  would correspond to the numerical 
value 0, while maxL = 1mL +  would correspond 
to the numerical value 1, and each iL  would 
belong to [0, 1], i. e. minL  = 0L  < 1L  < 2L < 

<… < mL  < 1mL +  = maxL . From now on, we 
work on extended ordered set L of qualitative 
values L = { 0L , L , 1mL + } = { 0L , 1L , 2L , 
…, mL , 1mL +  }.  

The qualitative addition and multiplication 
operators are respectively defined in the 
following way: 

 

• Addition : 
iL + jL = jiL + , if i+j < m+1,  

iL + jL = 1mL + , if i+j≥m+1           (16) 
 

• Multiplication : 
iL x jL = }j,imin{L             (17) 

 

These two operators are well-defined, 
commutative, associative, and unitary. 
Addition of labels is a unitary operation    
since 0L  = minL is the unitary element, i.e. 

iL + 0L = 0L + iL = iL + 0 = iL  for all 0 ≤  i ≤  
m+1. Multiplication of labels is also a unitary 
operation since 1mL +  = maxL  is the unitary 
element, i.e. iL  × 1mL +  = 1mL +  × iL  = 

}1m,imin{L + = iL for 0 ≤  i ≤  m + 1. 0L  is the 
unit element for addition, while 1mL +  is the 
unit element for multiplication. L is closed 
under + and ×. The mathematical structure 
formed by (L, +, ×) is a commutative 
bisemigroup with different unitary elements 
for each operation. We recall that a 
bisemigroup is a set S endowed with two 
associative binary operations such that S is 
closed under both operations. If L is not an 
exhaustive set of qualitative labels, then other 
labels may exist in between the initial ones, so 
we can work with labels and numbers - since a 
refinement of L is possible. When mapping 
from L to crisp numbers or intervals, 0L  = 0 
and 1mL + = 1, while 0 < iL  < 1, for all i, as 
crisp numbers, or iL  included in [0, 1] as 
intervals/subsets. For example, 1L , 2L , 3L  
and 4L  may represent the following 
qualitative values: 1L ∆, very poor, 2L ∆, poor, 

3L ∆, good and 4L ∆, very good where ∆ 
symbol means ”by definition”. We think it is 
better to define the multiplication × of iL  × 

jL  by }j,imin{L  because multiplying two 
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numbers a and b in [0, 1] one gets a result 
which is less than each of them, the product is 
not bigger than both of them as Bolanos et al. 
did in [1] by approximating iL  × jL  = jiL +  > 
> max{ iL , jL }.  

While for the addition it is the opposite: 
adding two numbers in the interval [0, 1] the 
sum should be bigger than both of them, not 
smaller as in [1] case where iL + jL = min{ iL , 

jL } < max{ iL , jL }. 
 
4.2. QUALITATIVE BELIEF 

ASSIGNMENT 
 

A qualitative belief assignment (qba),    
and we call it qualitative belief mass or q-mass 
for short, is a mapping function qm(.): 

ΘG a L where ΘG  corresponds the space of 
propositions generated with ∩  and ∪  
operators and elements of Θ  taking into 
account the integrity constraints of the model. 
For example if Shafer’s model is chosen for 
Θ , then ΘG  is nothing but the classical power 
set Θ2  [18], whereas if free DSm model is 
adopted ΘG  will correspond to Dedekind’s 
lattice (hyper-power set) ΘD  [24].  

Note that in this qualitative framework, 
there is no way to define normalized qm(.), but 
qualitative quasi-normalization is still possible 
as seen further.  

Using the qualitative operations defined 
previously we can easily extend the 
combination rules from quantitative to 
qualitative. In the sequel we will consider        
s ≥  2 qualitative belief assignments 1qm (.),..., 

sqm  (.) defined over the same space ΘG  and 
provided by s independent sources 1S ,..., sS of 
evidence. 

 

Important note:  
The addition and multiplication operators 

used in all qualitative fusion formulas in next 
sections correspond to qualitative addition and 
qualitative multiplication operators defined in 
(18) and (19) and must not be confused with 
classical addition and multiplication operators 
for numbers. 

4.3. QUALITATIVE CONJUNCTIVE 
RULE 

 
The qualitative Conjunctive Rule (qCR) of 

s ≥  2 sources is defined similarly to the 
quantitative conjunctive consensus rule, i.e.: 

qCRqm (X) = ∑ ∏
=∩∩

∈ =Θ

XX...X
,GX,...,X

s

1i
ii

s1
s1

)X(qm     (18) 

The total qualitative conflicting mass is 
given by: 

s...1K  = ∑ ∏
φ=∩∩

∈ =Θ

s1
s1
X...X

,GX,...,X

s

1i
ii )X(qm  

 
4.4. QUALITATIVE DSm CLASSIC  

RULE 
 

The qualitative DSm Classic rule (q-
DSmC) for s ≥  2 is defined similarly to DSm 
Classic fusion rule (DSmC) as follows: 

)(qmqDSmC φ = 0L  and for all X Θ∈D \{φ }, 

)X(qmqDSmC  = ∑ ∏
=∩∩

∈ =Θ

XX...X
,DX,...,X

s

1i
ii

s1
s1

)X(qm     (19) 

 
4.5. QUALITATIVE DSm HYBRID   

RULE 
 

The qualitative DSm Hybrid rule (q-
DSmH) is defined similarly to quantitative 
DSm hybrid rule [24] as follows: 

 

)(qmqDSmH φ  = 0L             (20) 

and for all X Θ∈G \{φ }, 
)X(qmqDSmH ∆ φ  (X) [ )X(qS1  + 

+ )X(qS2  + )X(qS3 ]           (21) 
 

where all sets involved in formulas are in the 
canonical form and φ  (X) is the characteristic 
non-emptiness function of a set X, i.e.: 
φ  (X)  = 1mL +  if X φ∉  and φ  (X)  = 0L  
otherwise, where φ∆ { φφ ,M }. Mφ  is the set 

of all elements of ΘD which have been forced         
to be empty through the constraints of the 
model M and φ  is the classical/universal 
empty set.  
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)X(qm)X(qS qDSmC1 ≡ , )X(qS2 , )X(qS3  are 
defined by: 

)X(qS1  ∆ ∑ ∏
=∩∩

∈ =Θ

XX...X
,DX,...,X

s

1i
ii

s1
s1

)X(qm         (22) 

)X(qS2 ∆  ∑ ∏
=∧φ∈∨=

φ∈ =
)IX()u[()Xu(
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s

1i
ii

t
s1

)X(qm  

                                                               (23) 

)X(qS3 ∆ ∑ ∏

φ∈∩∩
=∪∪

∈ =Θ

s1
s1

s1

X...X
XX...X
,DX,...,X

s

1i
ii )X(qm         (24) 

with u ∆ u( 1X ) ∪∪ ...  u( sX ) where u(X) is 
the union of all iθ  that compose X,                  

tI  ∆ iθ n... θ∪∪  is the total ignorance. 
)X(qS1  is nothing but the qDSmC rule for s 

independent sources based on )(Mf Θ ; 
)X(qS2  is the qualitative mass of all relatively 

and absolutely empty sets which is transferred 
to the total or relative ignorances associated 
with non existential constraints (if any, like in 
some dynamic problems); )X(qS3  transfers 
the sum of relatively empty sets directly onto 
the canonical disjunctive form of non-empty 
sets. qDSmH generalizes qDSmC works for 
any models (free DSm model, Shafer’s model 
or any hybrid models) when manipulating 
qualitative belief assignments. 
 

4.6. QUALITATIVE PCR5 RULE             
(Q - PCR5) 

 
In classical (i.e. quantitative) DSmT 

framework, the Proportional Conflict 
Redistribution rule no. 5 (PCR5) defined in 
[26] has been proven to provide very good and 
coherent results for combining (quantitative) 
belief masses, see [25, 7].  

When dealing with qualitative beliefs and 
using Dempster-Shafer Theory (DST), we 
unfortunately cannot normalize, since it is not 
possible to divide linguistic labels by linguistic 
labels.  

Previous authors have used the un-
normalized Dempster’s rule, which actually is 
equivalent to the Conjunctive Rule in Shafer’s 

model and respectively to DSm conjunctive 
rule in hybrid and free DSm models. 
Following the idea of (quantitative) PCR5 
fusion rule, we can however use a rough 
approximation for a qualitative version of 
PCR5 (denoted qPCR5) as it will be presented 
in next example, but we did not succeed so far 
to get a general formula for qualitative PCR5 
fusion rule (q-PCR5) because the division of 
labels could not be defined.  

 
5. CONCLUSION 

 
A general presentation of foundation of 

DSmT has been proposed in this introduction 
which proposes new quantitative rules of 
combination for uncertain, imprecise and 
highly conflicting sources of information. 
Several applications of DSmT have been 
proposed recently in the literature and show 
the efficiency of this new approach over 
classical rules, mainly those based on the 
Demspter’s rule in the DST framework. 
Recent PCR rules of combination (typically 
PCR no 5) have also been developed which 
offer a more precise transfer of partial 
conflicts than classical rules. DSmT rules have 
been also extented for the fusion of qualitative 
beliefs expressed in terms of linguistic labels 
for dealing directly with natural language and 
human reports. Matlab source code for the 
implementation of DSm rules and also new 
belief conditioning rules (not presented herein) 
have been recently developed and can be 
found in the forthcoming second DSmT book 
[26]. 
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